KAM tori for higher dimensional beam equations with constant potentials∗

نویسندگان

  • Jiansheng Geng
  • Jiangong You
چکیده

In this paper, we consider the higher dimensional nonlinear beam equations utt + u + σu + f (u) = 0, with periodic boundary conditions, where the nonlinearity f (u) is a real– analytic function nearu = 0 with f (0) = f ′(0) = 0 and σ is a real parameter in an interval I ≡ [σ1, σ2]. It is proved that for ‘most’ positive parameters σ lying in the finite interval I, the above equations admit a family of small-amplitude, linearly stable quasi-periodic solutions corresponding to a Cantor family of finite dimensional invariant tori of an associated infinite dimensional dynamical system. The proof is based on an infinite dimensional KAM theorem, modified from (Geng and You 2006 Commun. Math. Phys. 262 343–72) and (Xu J et al 1996 Sci. China Ser. A 39 372–83, 383–94) with weaker non-degeneracy conditions. Mathematics Subject Classification: 37K55, 35B10, 35J10, 35Q40, 35Q55

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

KAM Tori for 1D Nonlinear Wave Equations with Periodic Boundary Conditions

with periodic boundary conditions are considered; V is a periodic smooth or analytic function and the nonlinearity f is an analytic function vanishing together with its derivative at u = 0. It is proved that for “most” potentials V (x), the above equation admits small-amplitude periodic or quasi-periodic solutions corresponding to finite dimensional invariant tori for an associated infinite dim...

متن کامل

A Variant of Kam Theorem with Applications to Nonlinear Wave Equations of Higher Dimension

The existence of lower dimensional KAM tori is shown for a class of nearly integrable Hamiltonian systems where the second Melnikov’s conditions are relaxed, at the cost of the stronger regularity of the perturbed nonlinear term. As a consequence, it is proved that there exist many linearly stable invariant tori and thus quasi-periodic solutions for nonlinear wave equations of non-local nonline...

متن کامل

A KAM Theorem for Hamiltonian Partial Differential Equations in Higher Dimensional Spaces

In this paper, we give a KAM theorem for a class of infinite dimensional nearly integrable Hamiltonian systems. The theorem can be applied to some Hamiltonian partial differential equations in higher dimensional spaces with periodic boundary conditions to construct linearly stable quasi–periodic solutions and its local Birkhoff normal form. The applications to the higher dimensional beam equati...

متن کامل

KAM theory for the Hamiltonian derivative wave equation

We prove an infinite dimensional KAM theorem which implies the existence of Cantor families of small-amplitude, reducible, elliptic, analytic, invariant tori of Hamiltonian derivative wave equations. 2000AMS subject classification: 37K55, 35L05.

متن کامل

Degenerate KAM theory for partial differential equations

Article history: Received 1 August 2010 Available online 16 November 2010 MSC: 37K55 35L05 This paper deals with degenerate KAM theory for lower dimensional elliptic tori of infinite dimensional Hamiltonian systems, depending on one parameter only. We assume that the linear frequencies are analytic functions of the parameter, satisfy a weak non-degeneracy condition of Rüssmann type and an asymp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006